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Abstract

We show that human players’ gameplay in the game of Wor-
dle is influenced by the semantics, orthography, and morphol-
ogy of the player’s previous guesses. We demonstrate this in-
fluence by comparing actual human players’ guesses to near-
optimal guesses, showing that human players’ guesses are bi-
ased to be similar to previous guesses semantically, ortho-
graphically, and morphologically.

Introduction
Wordle is a daily word-guessing game where players at-
tempt to identify a hidden five-letter word within six at-
tempts (Wardle 2021). Players usually attempt to minimize
the number of guesses they use. Players also usually want
to maintain a “streak” of having solved the game within at
most 6 guesses.

We explore the difference between near-optimal play and
human gameplay, which may be influenced by cognitive
shortcuts and biases. In order to estimate near-optimal plays,
we use the maximum-entropy heurstic. We verify that that
heuristic is near-optimal.

In settings where word association is important, humans
are known to be influenced by salient past information, a
phenomenon known as priming in psychology (Schacter and
Buckner 1998). We conjecture that a priming effect exists
in the game of Wordle as well. Additionally, we conjecture
that humans will tend to depart less from previous guesses
in order to minimize cognitive load.

Since, as we show, humans’ guesses tend to be close se-
mantically to previous guesses, humans’ Wordle plays can
be seen as being akin to word-association games.

We review the prior work on priming in psychology, and
in particular on how priming influences future word choice.
We then review the optimal strategy in Wordle, as well
as heuristics that approximate it. We introduce our human
guess data. We then present our approach to measuring hu-
man biases in Wordle gameplay and demonstrate the sys-
tematic differences between human plays ane near-optimal
play.
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Background: Human Cognitive Processes
Priming is a phenomenon in psychology where past ex-
perience influences behavior without the person’s explicit
knowledge of the influence (Schacter and Buckner 1998).
Specifically, one aspect of priming is word association. Prior
works have demonstrated the grammatical class, semantic
meaning and rhyme of the previous (cue) word would influ-
ence the later (response) word by humans.

Deese (1962) had done early research on word associ-
ation exploring the influence of grammatical class of cue
words over word association on the next word. De Deyne
and Storms (2008) followed up the study and suggested that
no matter whether a noun, a verb or an adjective are given
as cues, the resulting association is most likely to be nouns.
Furthermore, for noun cues, while still being dominant, the
effect of paradigmatic association (associating with the same
class i.e. noun) would decrease when changing from first to
second and third response.

Steyvers and Tenenbaum (2005) demonstrate that an
undirected free association network — constructed from
data by Nelson (1999) that collects human participants’ first
responses associated with given cue words — where each
word is a node and two words are connected if there exists a
cue-response pair consisting of those two words — reveals
that, on average, each word is connected to only 0.44% of
the overall dataset. This finding underscores the sparseness
of the association network where the probability of each
word being the response given a cue word is not equally dis-
tributed.

Steyvers and Tenenbaum (2005) also use data collected
by Miller (1995) and Fellbaum (1998), and found that the
word network constructed based on semantics of words ex-
hibits sparseness, connectedness, neighboring clustering and
power-law degree distribution, which are same characteris-
tics exhibited in the free association network, just a varying
degree.

Bullinaria and Levy (2007) and McDonald and Lowe
(2022) observe the connection between information regard-
ing lexical semantics and patterns of word co-occurrence
(words appearing together). De Deyne and Storms (2008)
also illustrates that the basic semantic features (coded in Wu
and Barsalou (2009)): “taxonomic,” “entity,” and “situation”
are influential in terms of association responses, with “situ-
ation” being the most prominent.
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Nelson, Bajo, and Canas (1987) demonstrate the effect of
rhyme on memory and word association. They run an exper-
iment where subjects would initially study (read aloud) the
cue-target pair of a given rhyme; then 1.5-2 minutes after
they finished studying, a meaning-related cue word and its
semantic relation with the target word would be given and
the participants would be required to read it aloud and re-
call the word they studied (Nelson, Bajo, and Canas 1987).
In the experiment, cue words that rhyme with many other
words would decrease the accuracy of the respondent, re-
gardless of the meaning-related cue word (Nelson, Bajo,
and Canas 1987). Through conducting a further experiment
that changed all the cue-target pairs studied to be meaning-
related and only half to be also rhyme-related, Nelson, Bajo,
and Canas (1987) showed that the effect of rhyming appears
only if the subjects actively attend to it when studying the
word pairs.

Background: Wordle solving mechanisms
The objective of Wordle depends on the player — it can be
maintaining the streak (i.e. try not to lose today’s game),
win in as few guesses as possible, or even winning the game
using funny words.

However, most of the solving mechanisms designed
aimed to optimize objectives regarding the number of
guesses like minimizing the average number of guesses,
minimizing the number of guesses in the worst case, etc.
Those mechanisms can be classified into two classes: the
exact optimization approach and heuristic approaches. The
best approaches based on heuristics achieve results that are
only marginally inferior to exact methods.

Exact Solution for Wordle
Bertsimas and Paskov (2024) found an optimal and effi-
cient solution for Wordle that minimizes the average number
of guesses using dynamic programming. They describe the
game as a Markov Decision Process and use various pruning
techniques to iterate through all the possible actions given
a state to keep a value function that represents the optimal
average guesses given the state. When choosing an action,
the algorithm chooses to transition to the state with smallest
value function. Bertsimas and Paskov (2024) show that the
word "SALET" is the best starting guess and the minimum
average number of guesses required is 3.421. They demon-
strate that under this approach the program never loses (i.e.
it always completes the game within 6 guesses).

Heuristic approaches
Heuristic-based approaches to Wordle do not guarantee an
optimal result but are relatively competitive. For instance,
Bonthron (2022) proposes using rank-one approximations
with latent semantic indexing and get the average num-
ber of guesses of 4.04, Anderson and Meyer (2022) pro-
pose using reinforcement learning, but do not report perfor-
mance results regarding average number of guesses, a di-
rect entropy-based (Shannon 1948) approach is also possible
where the Doddle implementation of it has the average num-
ber of guesses of 3.432, which is close to the optimal (Liu
2022) (Cross 2022).

Doddle is an open-source Wordle solver, implemented in
Python, and have designed two heuristic-based strategies:
minimax and entropy (Cross 2022).

Doddle’s minimax heuristic aims to minimize the num-
ber of guesses for the worst-case scenario with search depth
of 1 (for each guess, it is only considering over all the sit-
uations after that single guess). For each guess, it iterates
through all possible words in the game and chooses the one
that minimizes the size of maximum partition (the amount
of possible solutions after this guess given the worst case/ac-
tual answer occur) as the guess. Given the starting guess as
"SALET", it is guaranteed to finish the game in 5 guesses
and have the average number of guesses to be 3.482 (Cross
2022).

Doddle’s entropy-based heuristic (also with depth 1) re-
volves around reducing the uncertainty at each step by
choosing the guess that decreases (in average) the most num-
ber of potential solutions after that guess (Shannon 1948)
(Cross 2022). The entropy for a move reflects the distribu-
tion of possible future game states after the guess. Let s be
the current state that represents all of the previous guesses
and coloring (which contains the letters not used by the tar-
get word, the letters not in the same location as the target
word and the letters in the same locations as the target word).
Let gs be the list of future states given a the current state s
and guess g , gsi be the i th element (state) in the list gs and
ns be the number of potential solutions given state s, the
decrease in Shannon entropy given a guess g is calculated
using the formula below

Eg = −Σgs

ngsi

ns
log2

(
ngsi

ns

)
The solver aims to choose a guess that, on average, maxi-
mizes Eg , which is the guess that decreases the most bits of
entropy (where each bit of entropy decrease would cut the
potential solutions by half) (Cross 2022). This provides the
greatest amount of information and narrows down the possi-
ble solutions faster than minimax; given the starting guess
as "SALET" (the optimal guess), it is also guaranteed to
complete the game in 6 guesses and have the average num-
ber of guesses of 3.432 (Cross 2022) .

Data
The human guess data was sourced from Reddit. The
machine-generated guesses is obtained from Doddle, an
open-source Wordle solver introduced earlier. Although an
ideal comparison would be with the optimal model, due to
computational limitations, this study opted for Doddle as the
most practical alternative. It’s important to note that the per-
formance difference between the exact dynamic program-
ming solution and the heuristic entropy solver is minimal:
the exact solution achieves a minimum average of 3.421
guesses, while the heuristic-based solver has an average of
3.482 guesses for its minimax heuristic and 3.432 guesses
for its entropy-based heuristic. Hence from this point forth,
the heuristic entropy solver will be referred to as near-
optimal. Specifically, the near-optimal guesses are generated
using Doddle as follows: for each human game-play, the al-
gorithm will first gather the human first guess and generate



the near-optimal second guess; then, it’ll get the first two
human guesses and generate the near-optimal third accord-
ingly, and repeat this trend until human finishes the game.
It is recognized that if the algorithm just followed their
own guesses (i.e. generate its near-optimal first, then second
based on its first and so on), it would quickly diverge from
the human guessing routes, which make the comparison be-
tween them meaningless as now both the human and near-
optimal algorithm have different previous state and known
information.

Data collection
The data used is based on separate dump files for the
top 40,000 subreddits. Each subreddit has separate files
for comments and submissions. Specifically, the data for
this research project is collected from the r/Wordle sub-
reddit, where people share their guesses online contribut-
ing to a total of 83,000 data entries (Watchful1 2023).
Regex is used to identify lines in Wordle posts where users
have displayed both their square results and their guesses.
Regex searches for the combination of colored squares
and five-letter guesses enclosed in special HTML-like tags
(gt;!WORD!lt;), ensuring that only complete guess lines
are extracted. For instance, given text:

&gt;!STALE!&lt;
&gt;!SLUMS!&lt;

Regex will:

• match the first line
&gt;!STALE!&lt; and extract STALE.

• match the second line
&gt;!SLUMS!&lt; and extract SLUMS.

Data cleaning is described in Appendix .

Methods
Measuring Human Biases
To quantitatively assess the influence of human cognitive bi-
ases in Wordle games, human plays are compared to their
entropy-based near-optimal counterpart, where five different
metrics described below are utilized in an attempt to reveal
different aspects of human biases ( semantic, orthographic,
and morphological). For each guess in the data, the metrics
below are computed through comparing that guess with the
previous one (instead of comparing with all prior ones) un-
less otherwise stated.

Levenshtein Distance quantifies the minimum number
of edits—insertions, deletions, or substitutions—needed to
transform one word into another (Levenshtein 1966). This
feature captures how closely a player’s subsequent guesses
align with their previous ones in terms of structural similar-
ity. A smaller Levenshtein distance indicates that the player
is selecting guesses that are more similar to their prior at-
tempts, potentially reflecting a reluctance to explore novel
letter combinations or a preference for minimizing cognitive
effort.

Semantic distance The Word2vec distance is com-
puted using negative cosine similarity between word em-
bedding pairs. Words are represented as vectors using
Word2Vec (Mikolov et al. 2013), a neural network model
that converts words into continuous vector representations.
Word embeddings such as Word2Vec being closer together
in Euclidean space is more likely to the words correspond-
ing to those embeddings being semantically related than for
two embeddings far apart. This property measures seman-
tic relatedness of guesses, allowing a quantitative measure-
ment to the extent that players’ guesses are influenced by the
meanings and associations of previous guesses. A smaller
Word2Vec distance indicates a tendency to rely more on se-
mantically related words, suggesting a bias toward guessing
conceptually or contextually similar words.

The GloVe distance is computed using negative cosine
similarity between word embedding pairs as well. Words in
this case are represented as vectors using an unsupervised
learning algorithm that uses word co-occurance statistics,
similarly to word2vec (Pennington, Socher, and Manning
2014).

Character-level difference measures the extent to which
players deviate from their initial guesses, quantified by the
number of differing characters between subsequent guesses.
More character-level difference suggests a greater willing-
ness to explore alternative solutions. Conversely, minimal
deviation indicates an over-reliance on early guesses.

Shared Tokens (Syllables) This metric measures the fre-
quency with which players reuse previously employed sub-
words in their guesses. These subwords are identified us-
ing the nltk SyllableTokenizer, which operates by
breaking words down into their constituent syllables based
on phonetic patterns. SyllableTokenizer syllabifies
words based in the Sonority Sequencing Principle (SSP)
(Selkirk 1984), a language-agnostic algorithm proposed by
Otto Jepersen in 1904. The SSP determines syllable breaks
based on the sonorous quality of phonemes, which is in-
fluenced by the openness of the lips during articulation.
The SyllableTokenizer begins by assigning a sonor-
ity value to each phoneme according to a predefined hierar-
chy. By default this hierarchy categorizes English phonemes
into vowels, nasals, fricatives, and stops, with vowels re-
ceiving the highest sonority values (Hench and Estes 2024).
When a word is tokenized, the algorithm analyzes the se-
quence of phonemes, identifying potential syllable breaks
based on their sonority levels (Hench and Estes 2024). This
way, SyllableTokenizer breaks the 5-letter Wordle
words into smaller patterns that symbolize patterns within
words. This feature is viewed as an indicator of cognitive re-
source expenditure where a higher rate of shared tokens may
reflect a cognitive bias towards familiar patterns rather than
exploring novel word combinations.

Rhyme To determine whether two words rhyme or not,
their phonic transcription was used. This was achieved with
the help of the pronouncing library, which provides a
phonetic transcription based in the CMU Pronouncing Dic-
tionary (CMU 2015) . Two words are considered to have a



perfect rhyme if they have matching phonetic endings which
include stressed vowels (Per 2019). We assess if the guess
rhymes with the previous one. If the guess rhymes with the
previous one, it may suggest a bias toward the phonologi-
cally related words.

Cohen’s d Cohen’s d is a measure of effect size that quan-
tifies the standardized difference between two means, in this
case, human and model performance (Sullivan and Feinn
2012). Cohen’s d transforms the absolute difference be-
tween means into standard deviation units, enabling a direct
comparison of the magnitude of this difference across vari-
ous metrics. Effect sizes are traditionally classified as small
(d = 0.2), medium (d = 0.5), and large (d ≥ 0.8) (Car-
son 2012). A small effect indicates only a subtle difference
between the groups, whereas a large effect suggests a more
substantial divergence that is visually apparent to even ca-
sual observation.

Cohen’s d also provides an intuitive interpretation in
terms of percentile overlap between two distributions. For
example, a d of 0 indicates complete overlap, with no dis-
cernible difference between groups, while a d of 0.8 means
that the mean of one group corresponds to the 79th per-
centile of the other group, with an overlap of just 53%.

Experiments
We compare how human guesses/plays differ systematically
from near-optimal play. We obtain distributions of human
plays and near-optimal plays, and compare them. We as-
sess the effect size using Cohen’s d, and we computed the
p-values based on the t-statistics for the difference between
the two distributions.

We analyze separately games starting from different po-
sitions. We use the notation cggcyycbb, where (cg, cy, cb),
where the number of “green” guesses (correct letter in the
correct place) is denoted with cg , the number of “yellow”
guesses (correct letter in the incorrect place) is denoted with
cy , and the number of letter guesses that are incorrect is cb.

Below, we present some observations on the results of our
comparison of human play with near-optimal play.

Full results are presented in the Appendix.

Levenshtein Distance Studying the Entropy-based play,
in states such as 1g0y4b, 2g0y3b, and 1g1y3b, large aver-
age Cohen’s d values can be observed with -1.652, -1.135,
-1.178, respectively. Large cohen’s d indicates significant
differences between human and model play. These results
suggest that humans are more likely to guess words that
are structurally closer (smaller Levenshtein distance) to their
previous attempts compared to the model. This behavior
could stem from cognitive biases, such as a reluctance to
make drastic changes after receiving certain types of feed-
back. When a few letters have been confirmed as correct,
humans tend to stick closely to their previous guesses. For
example, after receiving feedback confirming just one cor-
rect letter, players could often become more conservative in
their subsequent guesses, whereas the model continues to
explore more broadly.

In contrast, states such as 0g1y4b and 0g0y5b exhibit
smaller Cohen’s d values, suggesting less of a gap between

human and model behavior. These states provide minimal
confirmation (with no or very few correct letters), encourag-
ing players to make more exploratory guesses, which aligns
their behavior more closely with the model.

Interestingly, states like 3g2y0b, 1g4y0b, 2g3y0b, and
1g3y1b also show smaller Cohen’s d values, even though
these states offer much more feedback (many correct let-
ters). In these cases, the solution space is significantly con-
strained, leading both the human and model to adopt more
conservative strategies, as there is little left to explore. Here,
human cognitive biases toward conservative guessing per-
sist, but now this conservatism aligns with the model’s be-
havior due to the narrowed solution space.

Additionally, extremely low p-values and high t-statistics
are demonstrated across most states. This shows that the dif-
ferences in Levenshtein distances between human guesses
and the model’s guesses are statistically significant.

In summary, when minimal confirmation is provided
(such as states with 0 correct letters), human guesses more
closely resemble those of the model, as reflected by smaller
effect sizes. As more partial confirmation is given (a few
correct or almost-correct letters), humans exhibit a stronger
bias toward sticking with familiar patterns, diverging from
the model’s exploratory strategy. Finally, when a lot of feed-
back is provided, both the human and model behave conser-
vatively, leading to more similar guess patterns.

A similar pattern emerges when evaluating minimax-
based play. States such as 1g0y4b, 2g0y3b, and 1g1y3b again
show large Cohen’s d values (-1.39, -1.06, and -1.03, re-
spectively), confirming that humans tend to stick closely to
previous guesses when they have some feedback, while the
model continues to explore more freely. The divergence be-
tween human and model play in these states is consistent
with the cognitive biases observed in entropy-based play:
after receiving partial confirmation, humans become more
conservative, while the model remains exploratory.

On the flip side, states like 0g1y4b and 1g4y0b show
smaller Cohen’s d values (0.0039 and 0.137, respectively),
reflecting a greater alignment between human and model
guesses. In these cases, where minimal or complete feed-
back is available, humans behave more like the model, ei-
ther because they are exploring due to lack of confirmation
or because both human and model strategies converge in the
face of constrained possibilities.

This consistency between the entropy-based and
minimax-based evaluations highlights the persistent nature
of human cognitive biases. In both models, humans tend
to adhere to structural similarities between their guesses,
particularly when feedback is only partial, causing their
behavior to deviate from the model’s more exploratory
tendencies.

Semantic Distance The Cohen’s d values for Word2Vec
semantic distances of the Entropy play hover around zero,
indicating very small effect sizes across most states. This
suggests that humans and the model exhibit similar patterns
when selecting semantically related words during gameplay.
States like 3g2y0b, 0g5y0b, and 3g1y1b show minimal dif-
ferences in behavior between humans and the model.
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Figure 1: Word2Vec Distance Histogram for State 3g2y0b -
three completely right letters, and two letters are correct but
misplaced. The small Cohen’s distance and p-value indicate
that the semantic choices of humans and the model are quite
similar in this state. Both rely on semantic context when sub-
stantial feedback is provided.

In states with minimal feedback (such as 0g0y5b, where
none of the guessed letters are correct), relatively higher Co-
hen’s d values can be observed. This may be due to the
model exploring more randomly, while human players are
guided by cognitive biases, leading to less random guesses.
As a result, human and model behavior differ more in these
states. Conversely, when players receive more informative
feedback (e.g., when some letters are correct but not in the
right positions, such as in states like 3g0y2b or 3g1y1b), Co-
hen’s d values decrease. This indicates that human guesses
become more semantically aligned with the model’s, likely
because with some letters fixed, there are fewer possible so-
lutions. Although Cohen’s d values remain small overall,
these patterns reveal important trends in how feedback in-
fluences the alignment between human and model behavior.
Additionally, the low p-values in many states emphasize that
even small deviations in guessing patterns are statistically
detectable, despite the overall alignment between human and
model play.

When semantic distance for Entropy play is computed
using GloVe embeddings, the overall trends remain simi-
lar, but the results are more pronounced. For instance, the
Cohen’s d values for states with little feedback (i.e., more
black tiles indicating incorrect guesses) are larger compared
to Word2Vec. For example, the semantic distance for state
0g0y5b with GloVe has a Cohen’s d of -0.437, significantly
greater than the -0.099 observed for Word2Vec. This indi-
cates that GloVe is better at capturing the differences be-
tween human and model play in these uncertain states, mak-
ing the trend more apparent than in the Word2Vec analysis.

A similar behavior is observed for the minimax strategy.
Semantic distances analyzed with Word2Vec embeddings
show Cohen’s d values close to zero, indicating small ef-
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Figure 2: GloVe Distance Histogram for State 0g0y5b where
no correct letters are found. The larger Cohen’s distance
value highlights a greater divergence between human and
model behaviors, with humans leaning more towards seman-
tically related words compared to the more exploratory na-
ture of the model’s guesses.

fect sizes. However, the same trend holds: in high-feedback
states such as 3g2y0b, Cohen’s d is relatively low at 0.002,
while in low-feedback states like 0g2y3b or 0g0y5b, Cohen’s
d values are relatively higher, at -0.059 and -0.099, respec-
tively. This again suggests that human players tend to devi-
ate more from the machine’s strategy when less feedback is
provided to guide their guesses.

The low t-statistics associated with many states further
highlight that while the effect sizes are small, the differences
between human and model behavior in terms of semantic
distance are consistently detectable. This suggests that al-
though humans and the minimax model display similar se-
mantic strategies in word guessing, subtle yet significant de-
viations remain, particularly in situations where human bi-
ases lead to less optimal word selection.

Repeating the same analysis for Minimax strategy with
GloVe embeddings yields results similar to those observed
with Word2Vec embeddings. The general trends remain con-
sistent, reinforcing the notion that GloVe better captures
the semantic distinctions between human and model play in
states with minimal feedback.

Overall, the semantic distance feature demonstrates a gen-
eral alignment between human and model strategies, with
subtle deviations in human responses to limited feedback,
possibly hinting at cognitive processes like semantic associ-
ations that differ slightly from the model’s approach. How-
ever, compared to other properties studied, such as Leven-
shtein distance, the Cohen’s d values for semantic distance
are much smaller.

To extend the analysis, the semantic distances were calcu-
lated between each human guess and its previous guess, be-
tween each near-optimal guess and its previous guess, and
pairwise semantic distances between all possible solution



candidates in Wordle. The semantic distance for all possi-
ble solution candidates was studied to establish a benchmark
that represents the natural semantic relationships within the
vocabulary.

The mean semantic distance for the candidate words is
0.971, which is similar to both human (0.958) and near-
optimal (0.974) distances. This suggests that neither humans
nor the model deviate significantly from the inherent seman-
tic structure of the vocabulary. However, the slight differ-
ences in means highlight subtle distinctions in behavior. Hu-
man guesses tend to have closer semantic connections, pos-
sibly reflecting a reliance on familiar word patterns. In con-
trast, the machine’s slightly higher semantic distance may
indicate a broader exploration strategy, prioritizing uncer-
tainty reduction over strict semantic proximity. The results
are shown in Fig. 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Semantic Distance

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y

Human Mean: 0.958, Optimal Mean: 0.974, Candidate Mean: 0.971
Human
Optimal
Candidate Words

Figure 3: Comparison of Semantic Distances Using GloVe
Embeddings. Human and near-optimal guesses are com-
pared to the previous guesses. Candidate words are com-
pared to all 2, 309 Wordle candidate. Human guesses tend to
be more similar to the previous guess than Optimal guesses
are. Candidate words are about as far away from each other
on average as consecutive Optimal guesses, with more op-
timal guesses at the far end of the distribution, indicating
the need to sometimes completely change the guess’s let-
ters, thereby making its semantics slightly further away on
average.

It’s important to note that the overall distribution of se-
mantic distances is narrow across all three categories (hu-
man, near-optimal, and candidate words), as shown in Fig-
ure 3. This suggests that most guesses, whether made by hu-
mans or machines, fall within a similar range of semantic
closeness. This indicates that Wordle’s guessing process is
constrained by the natural structure of the vocabulary, re-
gardless of whether it’s driven by human intuition or ma-
chine strategy.

In summary, while humans show a slight tendency to
rely on semantic relationships between words during game-
play, this does not result in significant divergence from near-

optimal gameplay. Both human and model guesses remain
closely aligned, constrained by the natural semantic relation-
ships inherent in the vocabulary.

Shared Tokens (Syllables) The Cohen’s d values for en-
tropy play across different states are mostly close to zero,
suggesting that humans and the model behave similarly
when it comes to reusing tokens in their guesses. The small
effect sizes imply that this feature is less influenced by cog-
nitive biases compared to Levenshtein distance.

However, as shown in Figure 14, certain states like
3g0y2b and 2g0y3b exhibit relatively larger effect sizes, with
Cohen’s d values above 0.07. In these states, which confirm
the presence of some correct letters although not necessar-
ily in correct position, human players tend to behave some-
what differently from the model, reusing syllables more fre-
quently. In contrast, states such as 0g1y4b and 0g0y5b which
provide less confirmation, appears to prompt similar ex-
ploratory behavior in both humans and the model, thereby
reducing the influence of cognitive biases.

A similar behavior is observed for the minimax strategy.
The Cohen’s d values are close to zero, indicating small ef-
fect sizes. However, the same trend holds: in partial confir-
mation states such as 3g0y2b and 2g0y3b , Cohen’s d is rel-
atively high at 0.070 and 0.084 respectively, while in little
confirmation states like 0g1y4b or 0g0y5b, Cohen’s d val-
ues are relatively smaller, at 0.015 and 0.017, respectively.
This again suggests that human players tend to deviate more
from the machine’s strategy when partial confirmation are
provided to aid the guessing process.

This behavior aligns with observations from Levenshtein
distance, reflecting a common human tendency to hold onto
partial information (e.g., some correct letters although that
may not be in correct location) and reuse similar syllables
in subsequent guesses. Overall, token reuse shows relatively
small effect sizes across most states, indicating that human
and model play are largely similar in this regard.

The reason that the common syllables metric are having
less Cohen’s d values is suspect to be that syllables are a
bigger unit than both shared characters and Levenshein dis-
tance (the maximum number of syllables change is 2 while
for shared characters and Levenshtein it’s 5), so the num-
ber of changes are greatly suppressed, thus making the two
appearing similar.

Shared Characters The Cohen’s d values for entropy
play reveal notable differences between human and model
behavior at the character level. For instance, states like
1g0y4b, 2g0y3b, 0g1y4b, and 1g1y3b exhibit high Cohen’s d
values (0.85 and above), indicating a significant divergence
between human and model strategies. This suggests that hu-
mans are more likely to retain specific characters (whether
correct or incorrect) in their guesses after receiving feed-
back about character matches. The fact that these states con-
firm the presence of one or two correct characters (either
green or yellow) prompts humans to make guesses that are
more character-consistent than the model’s guesses, poten-
tially due to cognitive biases like fixation on previously con-
firmed partial information.

For states such as 2g2y1b, 4g0y1b and 1g3y1b, where
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Figure 4: Shared chars histogram for 1g0y4b — Humans
tend to retain more characters from their previous guesses,
unlike the model which exhibits a more exploratory ap-
proach.

moderate Cohen’s d values (between 0.2 and 0.5) are ob-
served, we see that humans still deviate somewhat from the
model’s behavior but to a lesser extent. These situations pro-
vide too much confirmation where it would make both hu-
man and model act conservatively due to constrained solu-
tion space as described above.

States like 0g0y5b show smaller effect sizes (between 0.1
and 0.2), suggesting that humans and the model behave more
similarly when feedback has no confirmation. This is be-
cause humans and the model may both engage in more ex-
ploratory or random guessing behavior, reducing the impact
of cognitive biases.

Finally, for states like 3g2y0b and 0g5y0b, which show
Cohen’s d values close to zero or slightly negative, humans
and the model are virtually indistinguishable in their play.
This makes logical sense as in those states all the correct let-
ters are given and there’s barely any reason to explore other
letters, which would make both human and model to act sim-
ilarly (i.e. mainly keeping all the letters known).

The extremely small p-values (almost all close to zero)
and large t-statistics further validate the statistical signifi-
cance of these differences, confirming that the observed de-
viations between human and model performance at the char-
acter level are not due to chance.

A similar trend is observed for the minimax strategy even
though the results are less pronounced. In states where one
to two correct letters are given such as 0g1y4b and 2g0y3b ,
Cohen’s d is relatively high at 0.669 and 0.964 respectively
(which is less than the 0.940 and 1.033 in entropy play), in
states where little confirmation are given like 0g0y5b, Co-
hen’s d values are relatively smaller, at 0.167 (which greater
than the 0.157 in entropy play). In states where all correct
letters are given like 3g2y0b, the Cohen’d value is close to
zero (-0.012 and is the same with entropy play). This again
suggests that human players tend to deviate more from the

machine’s strategy when partial confirmation are provided
to aid the guessing process.

To extend the analysis, the shared chars between all
the human guesses and that between all the near-optimal
guesses per game are generated (Figure 15). The result
shows that similar amount of human and near-optimal
guesses share 5 characters, which makes logical sense as
those would generally only occur when the previous guess
already has confirmed all the five correct letters.

It also shows that near-optimal guesses have much more
cases where 0 or 1 tokens are shared yet human guesses have
more cases when 2 or 3 or 4 tokens are shared. This is con-
gruent with our above observation that when there’s partial
confirmation (i.e. some letters being correct), human tends
to act more conservative thus having more shared tokens yet
the model would be more explorative thus having less tokens
shared.

Conclusion
Human Wordle gameplay is influenced by semantic, or-
thographic, morphological biases, which lead to deviations
from near-optimal play. While entropy-based strategies,
such as those implemented by Doddle, follow a more ratio-
nal, information-maximizing approach, human players tend
to rely on familiar word patterns, semantic associations, and
partial confirmations from previous guesses. These tenden-
cies result in suboptimal strategies that often prioritize ease
and familiarity over strategic exploration.

Comparing human guesses to near-optimal model
guesses, our experiments demonstrate several key patterns.
Humans are more likely to guess words that are phono-
logically similar to their previous attempts, as reflected by
smaller Levenshtein distances and a greater reuse of sylla-
bles. They also exhibit biases toward semantically related
words, especially in states where minimal feedback is pro-
vided. Phonological biases, such as favoring words that
rhyme, also emerge in the data, albeit to a lesser extent.

Using a large dataset of over 65,000 human games,
we demonstrate that priming effects, including semantic
and phonological associations, are in effect. Using metrics
like Levenshtein distance, GloVe, Word2Vec similarity, and
shared syllables, we quantified these biases and showed sta-
tistically significant differences between human and model
guesses through measures such as Cohen’s d and t-tests. The
findings suggest that, in the face of uncertainty, humans tend
to stick with partially confirmed patterns rather than explor-
ing broader possibilities.
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Appendix: Sample Data
This appendix contains a series of visualizations that support
the main findings of this study by illustrating key differences
between human gameplay and near-optimal model guesses
in Wordle. The figures present histograms for several metrics
used in our analysis, including Levenshtein distance, seman-
tic distance (Word2Vec and GloVe), shared syllables, shared
characters, and rhyme occurrence. Each figure compares hu-
man guesses against the optimal model guesses under vari-
ous game states, such as those with partial or no feedback
(e.g., 0g0y5b, 2g0y3b). Metrics such as Cohen’s d and p-
values are provided to indicate the magnitude and statistical
significance of the observed differences.

Ultimately, these visualizations highlight the extent to
which human players rely on structural and semantic sim-
ilarities in their guesses, favoring familiarity over explo-
ration, particularly when faced with partial confirmation of
correct letters.

The full data we used is in a further Appendix.
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Figure 5: Levenshtein distance histogram for 2g0y3b Figure 6: Levenshtein distance histogram for 0g0y5b
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Figure 7: Levenshtein distance histogram for 2g3y0b Figure 8: Word2vec distance histogram for 0g0y5b
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Figure 9: Glove distance histogram for 2g3y0b Figure 10: Common syllables histogram for 0g0y5b
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Figure 11: Shared chars histogram for 2g2y1b Figure 12: Shared chars histogram for 0g0y5b
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Figure 13: Shared chars histogram for 0g5y0b Figure 14: Common syllables histogram for 3g0y2b
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Figure 15: Total shared chars histogram Figure 16: Proportion of rhyming guesses



Data cleaning
For each guess, the unnecessary parts such as the special
symbols (&gt;!, &!lt;) are removed. To ensure the
integrity of the data provided by Reddit users, a cross-
referencing process was conducted between the dataset and
a Wordle answers database. This approach verified the ac-
curacy of the Wordle IDs submitted and ensured that the
answers had not been altered. If a Wordle ID was not pro-
vided, the corresponding game was considered illegible, as
there was no way to confirm the authenticity of the data. In
cases where a Wordle ID was provided without an answer,
the last guess was cross-referenced with the Wordle answers
dataset. If the last guess matched the correct answer, it was
recorded; otherwise, the entry was removed. To maintain
consistency, all guesses were converted to lowercase. The
data cleaning process eliminated entries where users did not
include their guesses or submitted answers for non-Wordle
games. Additionally, any unsolved Wordle games were re-
moved from the dataset. As a result of these cleaning ef-
forts, the dataset was reduced from 83,000 entries to a more
manageable 65,000 entries. Ultimately, information about
the player, words guessed, and the number of guesses each
user made are obtained.


